Most EEG-fMRI studies in epileptic patients are analyzed using the general linear model (GLM), which assumes a known hemodynamic response function (HRF) to epileptic spikes. In contrast, independent component analysis (ICA) can extract blood-oxygenation level dependent (BOLD) responses without imposing constraints on the HRF. ICA might therefore detect responses that vary in time and shape, and that are not detected in the GLM analysis. In this study, we compared the findings of ICA and GLM analyses in 12 patients with idiopathic generalized epilepsy. Spatial ICA was used to extract independent components from the functional magnetic resonance imaging (fMRI) data. A deconvolution method identified component time courses significantly related to the generalized EEG discharges, without constraining the shape of the HRF. The results from the ICA analysis were compared to those from the GLM analysis. GLM maps and ICA maps showed significant correlation and revealed BOLD responses in the thalamus, caudate nucleus, and default mode areas. In patients with a low rate of discharges per minute, the GLM analysis detected BOLD signal changes within the thalamus and the caudate nucleus that were not revealed by the ICA. In conclusion, ICA is a viable alternative technique to GLM analyses in EEG-fMRI studies related to generalized discharges. This study demonstrated that the BOLD response largely resembles the standard HRF and that GLM analysis is adequate. However, ICA is more dependent on a sufficient number of events than GLM analysis.