h HIV-1 R5 viruses vary extensively in their capacity to infect macrophages. R5 viruses that confer efficient infection of macrophages are able to exploit low levels of CD4 for infection and predominate in brain tissue, where macrophages are a major target for infection. HIV-1 R5 founder viruses that are transmitted were reported to be non-macrophage-tropic. Here, we investigated the sensitivities of macrophage-tropic and non-macrophage-tropic R5 envelopes to neutralizing antibodies. We observed striking differences in the sensitivities of Env ؉ pseudovirions to soluble CD4 (sCD4) and to neutralizing monoclonal antibodies (MAbs) that target the CD4 binding site. Macrophage-tropic R5 Envs were sensitive to sCD4, while non-macrophage-tropic Envs were significantly more resistant. In contrast, all Envs were sensitive to VRC01 regardless of tropism, while MAb b12 conferred an intermediate neutralization pattern where all the macrophage-tropic and about half of the non-macrophage-tropic Envs were sensitive. CD4, b12, and VRC01 share binding specificities on the outer domain of gp120. However, these antibodies differ in their ability to induce conformational changes on the trimeric envelope and in specificity for residues on the V1V2 loop stem and 20-21 junction that are targets for CD4 in recruiting the bridging sheet. These distinct specificities of CD4, b12, and VRC01 likely explain the observed differences in Env sensitivity to inhibition by these reagents and provide an insight into the envelope mechanisms that control macrophage tropism. We present a model where the efficiency of bridging-sheet recruitment by CD4 is a major determinant of HIV-1 R5 envelope sensitivity to soluble CD4 and macrophage tropism.
Human immunodeficiency virus type 1 (HIV-1) entry into cells involves interactions with CD4 and coreceptor CCR5 or CXCR4 to trigger fusion of the virus and cell membranes. In vivo, HIV-1 infection is limited mainly to cells expressing CD4 and an appropriate coreceptor. These include T cells, macrophages, and dendritic cells as well as their progenitors (1-3). In the past, HIV-1 R5 viruses that use CCR5 were described as macrophage-tropic or M-tropic, reflecting a view that such viruses infect macrophages in addition to T cells (4-6). However, studies from our group and others have shown that R5 viruses vary extensively in their capacity to infect macrophages (7-14). This variation results mainly from differences in the ability of HIV-1 to exploit low levels of CD4 on macrophages for infection (10,12,14,15). Recent studies reported that founder viruses transmitted either sexually (16, 17) or via mother to child (18) were non-macrophage-tropic and that they persist in immune tissue even in late disease (10,12,19). Nevertheless, highly macrophage-tropic R5 variants are increasingly detected in late disease (20)(21)(22) and are predominant in brain tissue of subjects with HIV-associated neurocognitive disorders (7,10,12,14).The HIV-1 envelope glycoprotein is a trimer comprising three copies each of gp120 and tran...