Biotremors are vibrations, usually surface waves along the boundary of a medium, produced by an organism. While substrate-borne vibrations are utilized by different reptile species, true conspecific communication via biotremors has not yet been demonstrated in lizards. Recent research revealed that the veiled chameleon (Chamaeleo calyptratus) produces biotremors. The prerequisites for any communication system are the ability of an organism to produce and detect a signal. We tested C. calyptratus behavioral responses to vibrations by placing them on a dowel attached to a shaker, emitting vibrations of 25, 50, 150, 300, and 600 Hz and compared their locomotory velocity before and after the stimulus. Adult chameleons exhibited a freeze response to 50 and 150 Hz, while juveniles exhibited a similar response to frequencies between 50–300 Hz. In a second experiment, chameleons were induced to produce biotremors via experimenter contact. These biotremors ranged in mean fundamental frequency from 106.4 to 170.3 Hz and in duration from 0.06 to 0.29 s. Overall, two classes of biotremors were identified, “hoots” and “mini-hoots,” which differed significantly in mean relative signal intensity (-7.5 and -32.5 dB, respectively). Juvenile chameleons two months of age were able to produce biotremors, suggesting this behavior may serve a wide range of ecological functions throughout ontogeny. Overall, the data demonstrate that C. calyptratus can both produce and detect biotremors that could be used for intraspecific communication.