2020
DOI: 10.2298/fil2002591b
|View full text |Cite
|
Sign up to set email alerts
|

Index, the prime ideal factorization in simplest quartic fields and counting their discriminants

Abstract: We consider the simplest quartic number fields Km defined by the irreducible quartic polynomials x4-mx3-6x2+mx+1, where m runs over the positive rational integers such that the odd part of m2+16 is square free. In this paper, we study the index I(Km) and determine the explicit prime ideal factorization of rational primes in simplest quartic number fields Km. On the other hand, we establish an asymptotic formula for the number of simplest quartic fields with discriminant ? x and given index.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 18 publications
0
0
0
Order By: Relevance