“…min{ ċ,a/4}n nĉ(e min{ ċ,a/4} C2,1E[V 2 (θ 0 )] + 12E[V 4 (θ 0 )]) + exp(− ċ) ( C2,2 + 12c 3 (λmax + a −1 ) + 9v 4 (M 4 ) + 15) ≤ √ λ(e − min{ ċ,a/4}n/2 C2,3 E[V 4 (θ 0 )] + C2,4 ) = √ λ(e − ċn/2 C2,3 E[V 4 (θ 0 )] + C2,4 ),where the last inequality holds by applying the inequality e −αn (n + 1) ≤ 1 + α −1 , for α > 0 with α = min{ ċ, a/4}/2, and the last equality holds by noticing min{ ċ, a/4} = ċ with ċ given in(23). The explicit expressions for the constants C2,3 , C2,4 are given below: exp(− ċ) ( C2,2 + 12c 3 (λmax + a −1 ) + 9v 4 (M 4 ) + 15)(C13)with C2,1 , C2,2 given in (C12), ĉ, ċ given in Lemma 4.11, c 3 given in(20), and M 4 given in Lemma 4.Proof of Corollary 4.9 One notices that W 2 ≤ 2w 1,2 , then, by using similar arguments as in the proof of Lemma 4.8, one obtainsW 2 (L( ζλ,n t ), L(Z λ t )) ċ(n − k)/2)W 2 (L( θλ kT ), L( ζλ,k−1 kT )) + λ 1/4 √ 2ĉ n k=1 exp(− ċ(n − k)/2) 1 + E[V 4 ( θλ kT )] 1/E[V 4 ( ζλ,k−1 kT )]…”