Analysis of Homestake, Gallex and GNO measurements reveals evidence of variability of presumed solar-neutrino-flux measurements. Analysis of Super-Kamiokande neutrino records over the interval May 1996 to July 2001 reveals oscillations at 9.43 year−1 and 12.6 year−1, both well within a range of frequencies (6–16 year−1) that, according to helioseismology, could be related to internal solar rotation.Analysis of the results of a nuclear-decay experiment carried out at the Brookhaven National Laboratory over the time interval 1982–1986 reveals a strong annual oscillation and also strong oscillations at 11.2 and 13.2 year−1, both of which would, according to helioseismology, be compatible with influences of internal solar rotation. Similar oscillations are found in an extensive series of nuclear-decay measurements conducted by Alexander Parkhomov of the Lomonosov Moscow State University and the Russian Academy of Natural Sciences. By contrast, as noted by Stefan Pomme of the European Commission Joint Research Centre and his colleagues, nuclear-decay measurements acquired at standards laboratories tend not to exhibit evidence of variability.The most extensive series of nuclear-decay measurements comes from an experiment initiated by the late Gideon Steinitz at the Geological Survey of Israel. This experiment, which was in operation from January 2007 to November 2016, recorded 340,000 lines of radon-related measurements from three gamma detectors and three environmental detectors (temperature, pressure, and line voltage). Analysis of a subset of 85,000 lines of hourly gamma measurements reveals overwhelmingly strong evidence of diurnal, annual and semi-annual oscillations and a number of oscillations with frequencies compatible with influences of internal solar rotation. There is no correlation between the gamma measurements and the environmental measurements.The rotational modulations may be attributed to an influence of the solar internal magnetic field by the RSFP (Resonant Spin-Flavor Precession) process. The detection of several pairs of oscillations separated by precisely 1 year−1 may be attributed to misalignments of internal rotation axes with respect to the normal to the ecliptic. A triplet of oscillations (at effectively 7.43, 8.43 and 9.43 year−1) may be attributed to an internal region (presumably the core) that has a sidereal rotation rate of 8.43 year−1 and a rotation axis approximately orthogonal to that of the solar photosphere. These results suggest that the Sun had its origin in more than one stage of condensation of interplanetary material (one on top of another), which would presumably lead to layers of the solar interior that have different metallicities, as well as different rotation rates and axes.It is remarkable that the oscillation at 9.43 year−1 occurs in both Superkamiokande and GSI data with the same amplitude and the same phase.Analysis of GSI data, together with a review of experiments conducted by Enrico Bellotti and his collaborators of the Instituto Nazionali di Fisica Nucleare, suggests that neutrinos do not influence decay rates, but do influence – presumably by a collective process - the direction of emission of decay products. This can help explain why the GSI experiment – for which decay products travel through air – gives evidence of strong modulation, whereas experiments at standards laboratories – for which decay products typically travel through comparatively dense media – do not.The peak modulation occurs near local midnight in early June, suggestive of a role of cosmic neutrinos. These neutrinos could provide the mass attributed to dark matter for a neutrino mass of order 0.1 eV.