Disorders of breathing during sleep not only adversely affect the condition of the body during the daytime, but, above all, can be dangerous to health and life. Clinical methods of diagnosing these disorders are highly developed and, as a result, allow to effectively eliminate the problem, but still the problem is early diagnosis at home, which will be the basis for reporting to the doctor for extended examinations.This paper presents a proposed algorithm for inferring sleep-disordered breathing supported by conclusions from work on investigating the associations of discriminants with selected fragments of acoustic signals. The effectiveness of the developed algorithm was verified on a test sample of acoustic signals from selected patients treated by the MML clinic. The results of the study are the basis for the development of a numerical application for preclinical diagnosis of sleep apnea and sleep-disordered breathing. The verification of the algorithm carried out on real examples confirms the correctness of the assumptions made, demonstrates its effectiveness and suitability for use in a mobile application.