Electrophilic amination has emerged as a more environmentally benign approach to construct arene C−N bonds. However, heterogeneous catalysts remain largely unexplored in this area, even though their use could facilitate product purification and catalyst recovery. Here we investigate strategies to heterogenize a Cu(2,2′-bipyridine) catalyst for the amination of arenes lacking a directing group with hydroxylamine-O-sulfonic acid (HOSA). Besides immobilization of Cu on a metal−organic framework (MOF) or covalent organic framework (COF) with embedded 2,2′-bipyridines, a ship-in-a-bottle approach was followed in which the Cu complex is encapsulated in the pores of a zeolite. Recyclability and hot centrifugation tests show that zeolite Betaentrapped Cu II (2,2′-bipyridine) is superior in terms of stability. With N-methylmorpholine as a weakly coordinating, weak base, simple arenes, such as mesitylene, could be aminated with yields up to 59%, corresponding to a catalyst TON of 24. The zeolite could be used in three consecutive runs without a decrease in activity. Characterization of the catalyst by EPR and XAS showed that the active catalytic complex consisted of a site-isolated Cu II species with one 2,2′-bipyridine ligand.