In Batesian mimicry, a species lacking defences against predators benefits from mimicking the aposematic signal of a defended species, while the model may incur the costs of reduced defensive efficacy. Similar reciprocal indirect effects may emerge even when the signal is not mimicked; termed associational effects, such interactions are well known in plants sharing herbivores but have received little attention in animal studies. We investigated associational interactions in a system where unequally defended prey (chemically defended Bufo bufo and undefended Rana temporaria tadpoles), sharing general morphology but not an aposematic signal, were exposed to predation by the carp Cyprinus carpio along a gradient of relative prey abundance. In the absence of fish, the assemblage composition had no effect on the survival of Rana, while that of Bufo decreased with increasing abundance of Rana. Fish reduced the survival of tadpoles from both species. However, increased relative abundance of Bufo in the community led to enhanced survival in both Bufo and Rana. Increasing relative proportions of heterospecifics reduced metamorph mass only in Bufo, indicating greater sensitivity to interspecific competition compared to Rana; the effect was reduced in the presence of fish. Our results show that undefended non-mimetic prey enjoy reduced predation with increasing relative abundance of chemically defended prey, which in turn suffer greater mortality with an increasing proportion of the undefended species. Associational resistance/susceptibility, driven by current assemblage composition, not by selection for resemblance, can shape the dynamics of mixed communities of defended and undefended prey in the absence of mimicry.