Epizootics of nucleopolyhedrovirus characterize declines of cyclic populations of western tent caterpillars, Malacosoma pluviale californicum. In field populations, infection can be apparently lacking in one generation and high in the next. This may suggest an increase in the susceptibility to infection of larvae at peak density or the triggering of a vertically transmitted virus. Here, we test the hypothesis that reduced food availability, as may occur during population outbreaks of tent caterpillars, influences the immunocompetence of larvae and increases their susceptibility to viral infection. We compared immunity factors, hemolymph phenoloxidase and hemocyte numbers, and the susceptibility to nucleopolyhedroviral infection of fifth instar larvae that were fully or partially fed as fourth instars. To determine if maternal or transgenerational influences occurred, we also determined the susceptibility of the offspring of the treated parents to viral infection. Food limitation significantly reduced larval survival, development rate, larval and pupal mass, moth fecundity and levels of hemolymph phenoloxidase, but not the numbers of hemocytes. Neither the food-reduced larvae nor their offspring were more susceptible to viral infection and were possibly even less susceptible at intermediate viral doses. Food reduction did not activate latent or covert viral infection of larvae as might be expected as a response to stress. We conclude that reducing the food intake of fourth instar larvae to an extent that had measurable and realistic impacts on their life history characteristics was not translated into increased susceptibility to viral infection.