2022
DOI: 10.48550/arxiv.2202.11202
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Indiscriminate Poisoning Attacks on Unsupervised Contrastive Learning

Abstract: Indiscriminate data poisoning attacks are quite effective against supervised learning. However, not much is known about their impact on unsupervised contrastive learning (CL). This paper is the first to consider indiscriminate data poisoning attacks on contrastive learning, demonstrating the feasibility of such attacks, and their differences from indiscriminate poisoning of supervised learning. We also highlight differences between contrastive learning algorithms, and show that some algorithms (e.g., SimCLR) a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?