2024
DOI: 10.1017/etds.2024.39
|View full text |Cite
|
Sign up to set email alerts
|

Indistinguishable asymptotic pairs and multidimensional Sturmian configurations

SEBASTIÁN BARBIERI,
SÉBASTIEN LABBÉ

Abstract: Two asymptotic configurations on a full $\mathbb {Z}^d$ -shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of $\mathbb {Z}^d$ . We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguisha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?