Control algorithms for rotor load mitigation are today generally adopted by industry. Most of them are based on the Coleman transformation, which is easy to implement and bears satisfactory results when the rotor is balanced. A multitude of causes, e.g., blade erosion, dirt, and especially pitch misalignment, may create significant imbalances. This gives birth to undesirable vibrations and reduced control performance in terms of load mitigation. In this paper, an alternative transformation is introduced, able to detect and quantify the rotor load harmonics due to aerodynamic imbalance. Next, a control algorithm, capable of targeting rotor imbalance itself and simultaneously lowering rotor loads, is presented. The effectiveness of the proposed solution is confirmed through simulations in virtual environment.