Oculomotor activity provides critical insights into cognition and health, with growing evidence demonstrating its involvement in various cognitive functions such as attention, memory, and sensory processing. Furthermore, eye movements are emerging as significant indicators of psychopathologies and neurological disorders, including schizophrenia, dementia, depression, and tinnitus. Despite its crucial importance across domains, the role of oculomotion has often been underexplored in neuroimaging studies - largely due to methodological challenges. Eye movements have traditionally been viewed as artefacts in the neural signal, leading to the exclusion of epochs containing them, or correction methods to remove their influence. However, this strategy does not allow us to determine their role in a range of neural effects or mapping between tasks and neural responses. To enable such nuanced investigations in typical function and disease, we introduce what we term "Ocular Response Functions". We used simultaneous magnetoencephalographic and eye-tracking recordings during the resting-state combined with temporal response functions to precisely map the relationship between oculomotion and neural activity. Our approach allows for the temporally and spatially precise prediction of neural activity based on ocular action, and vice versa. We further validate this method in a passive listening task, highlighting its potential for uncovering cognitive insights in experimental settings. By providing a robust framework for examining the interplay between eye movements and neural processes, our method opens new avenues for both research and clinical applications, potentially advancing early detection and intervention strategies for neurological and psychiatric disorders.