Chemical signals mediating communication in ant societies are usually complex mixtures of substances with considerable variation in molecular composition and in relative proportions of components. Such multicomponent signals can be produced in single exocrine glands, but they can also be composed with secretions from several glands. This variation is often functional, identifying groups or specific actions on a variety of organizational levels. Chemical signals can be further combined with cues from other sensory modalities, such as vibrational or tactile stimuli. These kinds of accessory signals usually serve in modulatory communication, lowering the response threshold in the recipient for the actual releasing stimulus. Comparative studies suggest that modulatory signals evolved through ritualization from actions originally not related to the same behavioral context, and modulatory signals may further evolve to become independent releasing signals.The impressive diversity and ecological dominance of ant societies are in large part due to their efficient social organization and the underlying communication system. The functional division into reproductive and sterile castes, the cooperation in rearing the young, gathering food, defending the nest, exploring new foraging grounds, establishing territorial borders, and discriminating and excluding foreigners from the society are regulated by the precise transmission of social signals in time and space.Probably the best-studied communication behavior in ants is chemical communication, but other sensory modalities, such as mechanical cues, also play an important role in the formation of multicomponent signals in ant communication. Chemical releasers are produced in a variety of exocrine glands, and considerable progress has been made in chemically identifying many of these glandular secretions (for reviews see refs. 1 and 2). In this essay I will not emphasize, however, the natural product chemistry of ant pheromones, but rather concentrate on the proposition that communication in ant societies is often based on multicomponent signals, on nested levels of variation in chemical and other cues, which feature both anonymous and specific characteristics (3).
Pheromone BlendsSingle exocrine glands usually produce mixtures of substances. The Dufour's gland secretions of the carpenter ant Camponotus ligniperda, for example, include at least 41 compounds (4), and the mandibular glands of the weaver ant Oecophylla longinoda contain over 30 compounds, in colony-specific pro-The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.portions (5, 6). The identification of these components has mostly out-paced an understanding of their function, but in a few cases we begin to realize that the blends are part of the complex behavior-releasing key stimulus. In Oecophylla, for example, the mixture of mandibular gland secretions...