2020
DOI: 10.1109/access.2020.2972167
|View full text |Cite
|
Sign up to set email alerts
|

Individualized AI Tutor Based on Developmental Learning Networks

Abstract: In recent years, in the field of education technology, artificial intelligence tutors have come to be expected to provide individualized educational services to help learners achieve high levels of academic success. To this end, AI tutors need to be able to understand the current status and preferences of a learner and then suggest appropriate learning contents accordingly. However, it is challenging to monitor learner status and preferences continually and to recommend appropriate educational services. In thi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 34 publications
(22 citation statements)
references
References 18 publications
0
20
0
2
Order By: Relevance
“…The main recommendation systems have similar characteristics, namely, they are based on the analysis of student profiles and mostly offer learning content recommendation (Sharma and Ahuja, 2016;Venugopalan et al, 2016;Chanaa and Faddouli, 2018;Joy et al, 2019;Kim and Kim, 2020), recommendation of learning objects (Kapembe and Quenum, 2019), exercise recommendation (Huang et al, 2019), course recommendation (El Moustamid et al, 2017;Dahdouh et al, 2019) and learning resources (Chen et al, 2020).…”
Section: Fq1 -Are There Methods/techniques Of Analysis That Have Been Using Historical Log Records Of Students In the Field Of Distance Ementioning
confidence: 99%
See 1 more Smart Citation
“…The main recommendation systems have similar characteristics, namely, they are based on the analysis of student profiles and mostly offer learning content recommendation (Sharma and Ahuja, 2016;Venugopalan et al, 2016;Chanaa and Faddouli, 2018;Joy et al, 2019;Kim and Kim, 2020), recommendation of learning objects (Kapembe and Quenum, 2019), exercise recommendation (Huang et al, 2019), course recommendation (El Moustamid et al, 2017;Dahdouh et al, 2019) and learning resources (Chen et al, 2020).…”
Section: Fq1 -Are There Methods/techniques Of Analysis That Have Been Using Historical Log Records Of Students In the Field Of Distance Ementioning
confidence: 99%
“…The benefits categorized as intelligent services are: learning management system (Lavoie and Proulx, 2019), semantic recommendation using ontology (Sharma and Ahuja, 2016); hybrid recommendation based on student profile (Kapembe and Quenum, 2019); deep reinforcement learning structure (Huang et al, 2019); decision-making system (El Fouki et al, 2017), content-based recommendation system (Venugopalan et al, 2016), domain-specific language (Balderas et al, 2013), WAVE architecture (Manhães et al, 2014), intelligent teaching assistant system (Wang et al, 2019), profile analysis system (El Moustamid et al, 2017), algorithm based on the technique of optimizing ant colonies (Kozierkiewicz-Hetmańska and Zyśk, 2013), prototype indicators (Florian et al, 2011), online learning systems based on big data technologies (Dahdouh et al, 2018), agentbased recommendation system, Java2D technology-based e-learning system (Hamada, 2012), ID based recommendation system (Zakrzewska, 2012;Anaya et al, 2013), capture system (Lagman and Mansul, 2017), custom model (Chanaa and Faddouli, 2018), ontology model (Joy et al, 2019), evaluation tool (Dimopoulos et al, 2013), adaptive recommendation method (Chen et al, 2020), Kernel Context Recommendender System algorithm (Iqbal et al, 2019), distributed course recommendation systems (Dahdouh et al, 2019), custom user interface (Kolekar et al, 2018), recommendation system techniques for educational data mining (Thai-Nghe et al, 2010), individualized artificial intelligence tutor and LBA model (Kim and Kim, 2020) based on a system called SBAN (Zaoudi and Belhadaoui, 2020). The application of methods and techniques of data analysis provide student grade prediction, behavior pattern detection, academic progress forecasting, modeling, course dropout risk prediction, also providing student performance feedback to teachers.…”
Section: Gq2 -What Benefits Have Been Obtained For Students Teachers and Managersmentioning
confidence: 99%
“…Kim and Kim [37] Individualized Tutor of Artificial Intelligence as a system that integrates three developmental learning networks (DLNS). Manhães et al [40] WAVE architecture that provides useful information about student performance.…”
Section: Authorsmentioning
confidence: 99%
“…В первую очередь не вполне ясно, что в данном случае подразумевается под искусственным интеллектом. Идет ли речь о так называемом специализированном искусственном интеллекте, который разрабатывается для 12 13 14 решения определенного круга задач, или же о гипотетическом общем ИИ, способном выполнять любую интеллектуальную деятельность и фактически быть искусственным аналогом человека. Если предположить, что специализированного ИИ достаточно для вытеснения людей-педагогов, то это значит, что сам процесс обучения не требует от того, кто обучает, специфических человеческих свойств.…”
Section: искусственный преподаватель -техноутопия или близкая перспектива?unclassified
“…Таким образом, искусственные интеллектуальные системы, если применять их в обучении, несут в себе, скорее, функции тьюторов, а не преподавателей. В настоящее время уже существует опыт разработки таких искусственных тьюторов, представляющих собой варианты специализированного искусственного интеллекта [13]. Такие системы являются показательной реализацией делегирования компетенций и наделения искусственных систем агентностью, но не предполагают никакой субъектности, которая могла бы вытеснить субъектность преподавателя.…”
Section: агентность искусственных интеллектуальных систем в процессе обученияunclassified