PurposeThis study establishes the principles and process steps of a new basic trousers pattern using measurements obtained according to the rules of the anthropometric measurement system. The newly developed pattern-making system in this study will be called the “Anthropometric Measurements Based Pattern Making System” (AnMePa). It is aimed at producing trousers that are more fitting to the body, thanks to this pattern-making system.Design/methodology/approachIn this research, four pattern-making systems used in many parts of the world were compared with the “Anthropometric Measurements Based Pattern Making System” (AnMePa) with regard to the overall appearance and body fit of trousers prepared according to these systems. 10 virtual mannequins (VM) with different adult female body measurements were created, and trousers patterns were prepared for these mannequins. The trousers’ patterns were made and dressed on the mannequins in a 3D virtual dressing system. The body fit of the virtual garments was evaluated by five experts. The scores given by the experts were evaluated using the fuzzy logic method.FindingsAccording to the results, it is seen that the new basic trousers pattern developed by utilizing the anthropometric measurement system, AnMePa, provides the best body fit among the basic trousers patterns created according to the other examined pattern-making systems. The combination of 3D virtual dressing and fuzzy logic in the evaluation of garment body fit is considered an innovative method for the future of fashion design and production.Originality/valueIn the developed AnMePa, unlike the existing pattern-making systems, values that can be associated with the body measurements of individuals in a way that could be suitable for each community were used instead of constant values in the pattern-making process. Furthermore, the integration of 3D virtual fitting and fuzzy logic in assessing garment fit is considered a pioneering approach with significant implications for the future landscape of fashion design and production.