Air pollution has been an increasing concern within the Kingdom of Saudi Arabia and other Middle Eastern countries. In this work the authors present an analysis of daily ozone (O3), nitrogen oxide (NO(x)), and particulate matter (< 10 miccrom aerodynamic diameter; PM10) concentrations for two years (2010 and 2011) at sites in and around the coastal city of Jeddah, as well as a remote background site for comparison. Monthly and weekly variations, along with their implications and consequences, were also examined. O3 within Jeddah was remarkably low, and exhibited the so-called weekend effect--elevated O3 levels on the weekends, despite reduced emissions of O3 precursors on those days. Weekend O3 increases averaged between 12% and 14% in the city, suggesting that NO(x)/volatile organic compound (VOC) ratios within cities such as Jeddah may be exceptionally high. Sites upwind or far removed from Jeddah did not display this weekend effect. Based on these results, emission control strategies in and around Jeddah must carefully address NO(x)/VOC ratios so as to reduce O3 at downwind locations without increasing it within urban locations themselves. PM10 concentrations within Jeddah were elevated compared with North American cites of similar climatology though comparable to other large cities within the Middle East. Implications: Daily concentrations of O3, PM10, and NO(x) in and around the city of Jeddah, Saudi Arabia, are analyzed and compared with those of other reference cities. Extremely low O3 levels, along with a significant urban weekend effect (higher weekend O3, despite reduced NO(x) concentrations), is apparent, along with high levels of PM10 within the city. Urban O3 in Jeddah was found to be lower than that of other comparable cities, but the strong weekend effect suggests that care must be taken to reduce downwind O3 levels without increasing them within the city itself. Further research into the emissions and chemistry contributing to the reduced O3 levels within the city is warranted.