2019 Chinese Automation Congress (CAC) 2019
DOI: 10.1109/cac48633.2019.8996951
|View full text |Cite
|
Sign up to set email alerts
|

Indoor Smoking Behavior Detection Based on YOLOv3-tiny

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 17 publications
(10 citation statements)
references
References 10 publications
0
7
0
3
Order By: Relevance
“…Few researchers have incorporated computer vision to solve this problem. To solve the problem of traditional supervision and the low precision of smoke alarms in an indoor environment, Rentao et al [41] presented a deep learning-based solution based on YOLOv3-tiny, named Improved YOLOv3-tiny. Their proposed method inputs the images from their own created image dataset in an indoor environment.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Few researchers have incorporated computer vision to solve this problem. To solve the problem of traditional supervision and the low precision of smoke alarms in an indoor environment, Rentao et al [41] presented a deep learning-based solution based on YOLOv3-tiny, named Improved YOLOv3-tiny. Their proposed method inputs the images from their own created image dataset in an indoor environment.…”
Section: Literature Reviewmentioning
confidence: 99%
“…YOLOv3 merupakan model deteksi objek yang diusulkan oleh Redmon J dengan mengimplementasikan deep learning dan membangun hubungan langsung antara input gambar asli dengan output, serta memiliki kecepatan dan presisi yang tinggi. Algorima ini menggunakan Darknet-53 sebagai backbone untuk mengekstrasi fitur (Rentao, et al, 2019). Arsitektur YOLOv3 menggunakan convolutional layer 1x1 dan convolutional layer 3x3 untuk mengekstraksi fitur (ADARSH, et al, 2020).…”
Section: Yolov3unclassified
“…Sehingga kecepatan meningkat dari versi YOLO sebelumnya, tetapi akurasi deteksi semakin berkurang (ADARSH, et al, 2020). Backbone jaringan YOLOv3-Tiny yaitu terdiri dari convolutional layer dan pooling layer (Rentao, et al, 2019). Metode ini dapat meningkatkan informasi fitur objek yang terdapat pada gambar (Yang, et al, 2019).…”
Section: Yolov3-tinyunclassified
See 1 more Smart Citation
“…Weibin Cai et alused mosaic data augmentation to avoid model overfitting which is caused by the simple background in the public datasets and the YOLO-SMOKE model outperforms the original model by 4.91% mAP [6]. Rentao Zhao et al proposed an improved algorithm based on YOLOv3-tiny deep learning network for indoor smoking behavior detection, which can effectively meet the practical application requirements and provide a new way for assisting indoor supervision [7].…”
Section: Introductionmentioning
confidence: 99%