Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In recent years, increasingly prominent energy and environmental problems have pushed for higher requirements for buildings’ energy saving. According to the conventional energy-saving design method, the cooperative operation between architects, structural and equipment engineers and other professionals cannot run smoothly, so the energy-saving and emission reduction efficiency of the whole building cannot be improved effectively. The integrated design process (IDP) is a systematic method, which is applied in the scheme design stage and according to which the multi-level design factors of cities and buildings are considered comprehensively. It provides a concrete path of multi-specialty collaborative operation for the building’s climate responsive design. In this article, the development, operation process, software platform, evaluation and decision-making methods of the IDP are reviewed in a comprehensive manner. Finally, the prospect of IDP applied to the climate responsive design of buildings is analyzed, and some suggestions for future development are put forward. The IDP framework proposed in the research can provide a reference method for architectural climate responsive design practice and help formulate the future policy of energy-saving design.
In recent years, increasingly prominent energy and environmental problems have pushed for higher requirements for buildings’ energy saving. According to the conventional energy-saving design method, the cooperative operation between architects, structural and equipment engineers and other professionals cannot run smoothly, so the energy-saving and emission reduction efficiency of the whole building cannot be improved effectively. The integrated design process (IDP) is a systematic method, which is applied in the scheme design stage and according to which the multi-level design factors of cities and buildings are considered comprehensively. It provides a concrete path of multi-specialty collaborative operation for the building’s climate responsive design. In this article, the development, operation process, software platform, evaluation and decision-making methods of the IDP are reviewed in a comprehensive manner. Finally, the prospect of IDP applied to the climate responsive design of buildings is analyzed, and some suggestions for future development are put forward. The IDP framework proposed in the research can provide a reference method for architectural climate responsive design practice and help formulate the future policy of energy-saving design.
Lightweight structures, characterized by rapid assembly, are vital for creating habitats in outdoor environments, but their implementation in high-plateau cold regions encounters significant challenges in heating and ventilation. This paper systematically introduces the environmental characteristics and reviews the demands and primary influencing factors of indoor environments in these regions. The advantages and limitations of underground lightweight construction are also discussed. Current research indicates that evaluation methods for air quality in high-altitude cold regions require further development. Reducing building heat loss and minimizing cold air infiltration can enhance indoor environments and lower energy consumption. However, it is essential to establish effective ventilation strategies to prevent the accumulation of air pollutants. Then, potential passive ventilation improvement measures suitable for the environmental characteristics of high-cold plateaus are outlined. The application potential and possible limitations of these measures are summarized, providing references for future research. Finally, the main research methods for ventilation and heating within building interiors are organized and discussed. Findings indicate that computational fluid dynamics models are predominantly used, but they demonstrate low efficiency and high resource consumption for medium- to large-scale applications. Integrating these models with network models can achieve a balance of high computational accuracy and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.