Endogenous factors involved in the progression of cisplatin nephropathy remain undetermined. Here, we demonstrate the toxico-pathological roles of indoxyl sulfate (IS), a sulfate-conjugated uremic toxin, and sulfotransferase 1A1 (SULT1A1), an enzyme involved in its synthesis, in cisplatin-induced acute kidney injury using Sult1a1-deficient (Sult1a1-/- KO) mice. With cisplatin administration, severe kidney dysfunction, tissue damage, and apoptosis were attenuated in Sult1a1-/- (KO) mice. Aryl hydrocarbon receptor (AhR) expression was increased by treatment with cisplatin in mouse kidney tissue. Moreover, the downregulation of antioxidant stress enzymes in wild-type (WT) mice was not observed in Sult1a1-/- (KO) mice. To investigate the effect of IS on the reactive oxygen species (ROS) levels, HK-2 cells were treated with cisplatin and IS. The ROS levels were significantly increased compared to cisplatin or IS treatment alone. IS-induced increases in ROS were reversed by downregulation of AhR, xanthine oxidase (XO), and NADPH oxidase 4 (NOX4). These findings suggest that SULT1A1 plays toxico-pathological roles in the progression of cisplatin-induced acute kidney injury, while the IS/AhR/ROS axis brings about oxidative stress.