In adults with COVID-19 (the disease caused by infection with severe acute respiratory syndrome coronavirus, SARS-CoV-2), the prevalence of acute neurologic symptoms (e.g., headaches, anosmia, seizure) and conditions (e.g., encephalopathy, stroke, delirium, encephalitis) ranges widely, from 4.4% to 100% of cases (1, 2). Neurologic manifestations in children younger than 18 years with COVID-19 is also relatively common. For example, in the United States, of nearly 3,700 cases, 17% had nonspecific neurologic conditions such as headache, fatigue, and myalgia, and 1% presented with encephalopathy, seizures, and meningeal signs (3). Worldwide, a report of nearly 1,400 pediatric patients described similar prevalence of headache (4%), anosmia (2%), seizures (0.7%), and cerebrovascular stroke (0.7%) (4).The pathophysiology of acute and postacute neurologic manifestations of COVID-19 is likely multifactorial. Each of the following mechanistic pathways could interactively or independently cause disease: 1) direct viral invasion and replication in the CNS, 2) large vessel or microvascular insufficiency due to vasoconstriction and/or occlusion, 3) nonspecific effects of severe systemic COVID-19 illness or treatment, and 4) immune system dysregulation and autoimmunity.
VIRAL INVASION OF THE NERVOUS SYSTEMCellular invasion by the SARS-CoV-2 begins with binding of the viral spike protein to a transmembrane receptor, followed by viral membrane fusion with the cellular membrane after activation of the spike protein by cellular proteases.SARS-CoV-2 binds to the angiotensin-converting enzyme (ACE) 2 receptor, a protein coexpressed with the protease transmembrane serine protease 2 (TMPRSS2) in endothelial cells throughout the body. ACE2 is particularly abundant in the small intestine, kidney, lungs, and heart (5). ACE2 is also present in human adult and fetal brain, with highest expression in the pons and medulla oblongata (6). In mice, brain ACE2 protein is higher in the early postnatal period than in the adult, whereas ACE2 activity is similar (7). ACE2 is also expressed in components of the cerebral vasculature and blood-brain barrier (BBB): that is, the endothelium, pericytes, and contractile cells (8-10). Purkinje cells, cortical layer V neurons, astrocytes, and micrglia also express ACE2 and TMPRSS2 (10). SARS-CoV-2 may bind