Abstract-The inability to reproduce spontaneous ventricular fibrillation in an animal model of chronic coronary artery disease has limited advances in understanding mechanisms of sudden cardiac death (SCD). Swine with hibernating myocardium arising from a chronic left anterior descending coronary artery (LAD) occlusion have a high rate of SCD that parallels the poor clinical survival of medically treated patients with hibernating myocardium. Kaplan-Meier analysis (nϭ426) demonstrated a cumulative mortality of 49% after 5 months that was almost entirely attributable to spontaneous SCD. Using implantable loop recorders, ventricular fibrillation was documented as the arrhythmic mechanism of death in all animals (nϭ10) and was usually preceded by ventricular tachycardia (nϭ8). Physiological studies before SCD (nϭ7) demonstrated total LAD occlusion and collateral-dependent myocardium (nϭ5), excluding acute occlusion as a major trigger of arrhythmia. The physiological substrate of hibernating myocardium was present before SCD, with reductions in LAD perfusion (SCD 0.79Ϯ0.13 versus 0.80Ϯ0.08 mL/min per g) and wall thickening (SCD 28Ϯ3% versus 22Ϯ3%) that were similar to survivors (nϭ14). Triphenyltetrazolium chloride infarcts among animals with SCD were infrequent (4 of 32) and small, averaging 4.6% of LV mass. Histology (nϭ4) showed postmortem changes but no acute inflammation nor contraction band necrosis. These data support the notion that hibernating myocardium is a pathophysiological substrate at high risk of SCD. This is independent of changes in functional stenosis severity, acute myocardial necrosis, or fibrotic scar. Thus, regional adaptations that promote myocyte survival in the setting of chronic repetitive ischemia result in a substrate with enhanced vulnerability to lethal arrhythmias and SCD.