Autophagy is an intracellular process for vacuolar bulk degradation of cytoplasmic components. The molecular machinery responsible for yeast and mammalian autophagy has recently begun to be elucidated at the cellular level, but the role that autophagy plays at the organismal level has yet to be determined. In this study, a genome-wide search revealed significant conservation between yeast and plant autophagy genes. Twenty-five plant genes that are homologous to 12 yeast genes essential for autophagy were discovered. We identified an Arabidopsis mutant carrying a T-DNA insertion within AtAPG9, which is the only ortholog of yeast Apg9 in Arabidopsis (atapg9-1). AtAPG9 is transcribed in every wild-type organ tested but not in the atapg9-1 mutant. Under nitrogen or carbon-starvation conditions, chlorosis was observed earlier in atapg9-1 cotyledons and rosette leaves compared with wild-type plants. Furthermore, atapg9-1 exhibited a reduction in seed set when nitrogen starved. Even under nutrient growth conditions, bolting and natural leaf senescence were accelerated in atapg9-1 plants. Senescence-associated genes SEN1 and YSL4 were up-regulated in atapg9-1 before induction of senescence, unlike in wild type. All of these phenotypes were complemented by the expression of wild-type AtAPG9 in atapg9-1 plants. These results imply that autophagy is required for maintenance of the cellular viability under nutrient-limited conditions and for efficient nutrient use as a whole plant.Protein degradation is an important process in almost every facet of plant physiology and development. In plants, three major degradation pathways have been described: the ubiquitin-dependent pathway and the chloroplast and the vacuolar degradation pathways (for review, see Vierstra, 1996). Among these pathways, vacuolar degradation is assumed to be involved in bulk protein degradation by virtue of the resident proteases in the vacuole. Two types of vacuoles have been described in plants: the storage vacuole and the lytic central vacuole (for review, see Marty, 1999). However, there may be additional vacuole types that await discovery. Protein storage vacuoles are often found in seed tissues and accumulate proteins that are mobilized and used as the main nutrient resource for germination. Most cells in vegetative tissues have a large central vacuole, containing a wide range of proteases in an acidic environment. Substrate proteins must be transported and sequestered into this vacuole for degradation.Autophagy, a ubiquitous eukaryotic process, is responsible for this sequestration. Two types of autophagy have been described, namely macroautophagy and microautophagy (for review, see Klionsky and Ohsumi, 1999). In yeast macroautophagy, a portion of the cytoplasm is first enclosed by a doublemembrane structure, the autophagosome. The outer membrane of the autophagosome then fuses to the vacuolar membrane, so that its inner membrane structure, the autophagic body, is delivered into the vacuolar lumen. The contents of the autophagic body are then digest...