BackgroundSARS-CoV-2 infection of the respiratory system can progress to a multi-systemic disease with aberrant inflammatory response. Cellular senescence promotes chronic inflammation, named as senescence-associated secretory phenotype (SASP). We investigated whether COVID-19 disease is associated with cellular senescence and SASP.MethodsAutopsy lung tissue samples from 11 COVID-19 patients and 43 age-matched non-COVID controls with similar comorbidities were analysed by immunohistochemistry for SARS-CoV-2, markers of senescence and key SASP cytokines. Virally-induced senescence was functionally recapitulated in vitro, by infecting epithelial Vero-E6 cells and a three-dimensional alveosphere system of alveolar type 2 (AT2) cells with SARS-CoV-2 strains isolated from COVID-19 patients.ResultsSARS-CoV-2 was detected by immunocytochemistry and electron microscopy predominantly in AT2 cells. Infected AT2 cells expressed the angiotensin-converting-enzyme 2 (ACE2) and exhibited increased senescence (p16INK4A and SenTraGorTM positivity) and IL-1β and IL-6 expression. In vitro, infection of Vero-E6 cells with SARS-CoV-2 induced senescence (SenTraGorTM), DNA damage (γ-H2AX) and increased cytokine (IL-1β, IL-6, CXCL8) and Apolipoprotein B mRNA-editing (APOBEC) enzyme expression. Next-generation-sequencing analysis of progenies obtained from infected/senescent Vero-E6 cells demonstrated APOBEC-mediated SARS-CoV-2 mutations. Dissemination of the SARS-CoV-2-infection and senescence was confirmed in extra-pulmonary sites (kidney and liver) of a COVID-19 patient.ConclusionsWe demonstrate that in severe COVID-19, AT2 cells infected by SARS-CoV-2 exhibit senescence and a proinflammatory phenotype. In vitro, SARS-CoV-2 infection induces senescence and inflammation. Importantly, infected senescent cells may act as a source of SARS-CoV-2 mutagenesis mediated by APOBEC enzymes. Therefore, SARS-CoV-2-induced senescence may be an important molecular mechanism of severe COVID-19, disease persistence and mutagenesis.