In Streptococcus pneumoniae, autolysis is considered a programmed cell-death process executed principally by the major autolysin (LytA), and the underlying mechanism causing its activation is not completely understood. It is known that autolysis is triggered by competence development at alkaline pH and regulated by a two-component system, ComDE, which senses a competence-stimulating peptide (CSP) and behaves as a quorum-sensing mechanism. In this work, we found that acidic stress triggered a LytA-mediated autolysis and, curiously, this phenomenon was regulated by a CSP-independent ComE pathway. A further analysis of a hyperactive ComD mutant revealed that ComE needs to be phosphorylated to activate acidic stress-induced lysis (ASIL). The comE transcripts were induced by acidic culture conditions, suggesting that ComE could be sensing acidic stress. We also investigated CiaRH, a twocomponent system whose null mutants show a comE derepression and a CSP-dependent autolysis induction at alkaline pH. By analysis of cia comE double mutants, we demonstrated that CiaRH protected cells from ASIL by a ComE-independent pathway. Here, we propose that ComE is the principal route of the signalling pathway that determines a global stress response, and clearly regulates the induction of the LytA-mediated programmed cell death in S. pneumoniae. Acidic stress may represent for S. pneumoniae an alternative condition, in addition to competence and antibiotics, to assure the release of virulence factors, DNA and cell-wall compounds by autolysis, favouring genetic exchange and contributing to its pathogenesis.