CpG DNA induces macrophage cyclooxgenase-2 (Cox-2) production. In this study, we have investigated a biochemical signaling pathway and transcription factors responsible for transcriptional regulation of the Cox-2 gene expression induced by CpG DNA. CpG DNAinduced Cox-2 promoter activity was completely inhibited by an endosomal acidification inhibitor (chloroquine), a TLR9 antagonist inhibitory CpG DNA, or overexpression of a dominant negative (DN) form of MyD88. In contrast, overexpression of DN-IRAK1 or DN-TRAF6 only partially inhibited CpG DNA-induced Cox-2 promoter activity and NF-B activation, indicating the presence of additional signaling modulators downstream of MyD88. CpG DNA-induced Cox-2 promoter activity was substantially suppressed in cells overexpressing super-suppressive IB (IB-arachidonic acid), DNp38, or DN-CREB. In addition, Cox-2 promoter-luciferase reporters with alterations in predicted cis-acting transcriptional regulatory elements revealed that C/EBP, Ets-1, NF-B, and CREB-binding sites are essential for optimal Cox-2 expression in response to CpG DNA. Conclusively, these results demonstrate that endosomal DNA processing and TLR9/MyD88-dependent activation of NF-B and p38 are required for transcriptional regulation of Cox-2 expression induced by CpG DNA, and suggest that interleukin-1 receptor-associated kinase and/or TRAF6 may be a diverging point for NF-B activation in response to CpG DNA in RAW264.7 cells.