Rice (Oryza sativa) seeds can germinate in the complete absence of oxygen. Under anoxia, the rice coleoptile elongates, reaching a length greater than that of the aerobic one. In this article, we compared and investigated the transcriptome of rice coleoptiles grown under aerobic and anaerobic conditions. The results allow drawing a detailed picture of the modulation of the transcripts involved in anaerobic carbohydrate metabolism, suggesting up-regulation of the steps required to produce and metabolize pyruvate and its derivatives. Sugars appear to play a signaling role under anoxia, with several genes indirectly up-regulated by anoxia-driven sugar starvation. Analysis of the effects of anoxia on the expansin gene families revealed that EXPA7 and EXPB12 are likely to be involved in rice coleoptile elongation under anoxia. Genes coding for ethylene response factors and heat shock proteins are among the genes modulated by anoxia in both rice and Arabidopsis (Arabidopsis thaliana). Identification of anoxiainduced ethylene response factors is suggestive because genes belonging to this gene family play a crucial role in rice tolerance to submergence, a process closely related to, but independent from, the ability to germinate under anoxia. Genes coding for some enzymes requiring oxygen for their activity are dramatically down-regulated under anoxia, suggesting the existence of an energysaving strategy in the regulation of gene expression.Higher plants are aerobic organisms that rapidly die when oxygen availability is limited due to soil flooding (Voesenek et al., 2006). Species originating from semiaquatic environments are, however, able to cope with flooding stress. They can survive complete submergence for weeks and some even have the capacity to grow vigorously and produce flowers and seeds in permanently water-saturated soils. In this context, a wellknown crop is rice (Oryza sativa), which produces high yields even when it is grown in water-logged rice paddies. A broad range of metabolic and morphological adaptations characterizes these tolerant species. Floodtolerant plants have developed the capacity to generate ATP without the presence of oxygen (fermentative metabolism) and/or to develop specific morphologies (e.g. air channels, enhanced shoot elongation) that improve the entrance of oxygen