Background
Canine distemper virus (CDV), which is highly infectious, has caused outbreaks of varying scales in domestic and wild animals worldwide, so the development of a high-efficiency vaccine has broad application prospects. Currently, the commercial vaccine of CDV is an attenuated vaccine, which has the disadvantages of a complex preparation process, high cost and safety risk. It is necessary to develop a safe and effective CDV vaccine that is easy to produce on a large scale. In this study, sequences of CDV haemagglutinin (HA) from the Yanaka strain were aligned, and three potential linear sequences, termed YaH3, YaH4, and YaH5, were collected. To increase the immunogenicity of the epitopes, ferritin was employed as a self-assembling nanoparticle element. The ferritin-coupled forms were termed YaH3F, YaH4F, and YaH5F, respectively. A full-length HA sequence coupled with ferritin was also constructed as a DNA vaccine to compare the immunogenicity of nanoparticles in prokaryotic expression.
Result
The self-assembly morphology of the proteins from prokaryotic expression was verified by transmission electron microscopy. All the proteins self-assembled into nanoparticles. The expression of the DNA vaccine YaHF in HEK-293T cells was also confirmed in vitro. After subcutaneous injection of epitope nanoparticles or intramuscular injection of DNA YaHF, all vaccines induced strong serum titres, and long-term potency of antibodies in serum could be detected after 84 days. Strong anti-CDV neutralizing activities were observed in both the YaH4F group and YaHF group. According to antibody typing and cytokine detection, YaH4F can induce both Th1 and Th2 immune responses. The results of flow cytometry detection indicated that compared with the control group, all the immunogens elicited an increase in CD3. Simultaneously, the serum antibodies induced by YaH4F and YaHF could significantly enhance the ADCC effect compared with the control group, indicating that the antibodies in the serum effectively recognized the antigens on the cell surface and induced NK cells to kill infected cells directly.
Conclusions
YaH4F self-assembling nanoparticle obtained by prokaryotic expression has no less of an immune effect than YaHF, and H4 has great potential to become a key target for the easy and rapid preparation of epitope vaccines.
Graphical Abstract