The Rho family of small GTPases are critical elements involved in the regulation of signal transduction cascades from extracellular stimuli to the cell nucleus, including the JNK/SAPK signaling pathway, the c-/os serum response factor, and the p70 S6 kinase. Here we report a novel signaling pathway activated by the Rho proteins that may be responsible for their biological activities, including cytoskeleton organization, transformation, apoptosis, and metastasis. The human RhoA, CDC42, and Rac-1 proteins efficiently induce the transcriptional activity of nuclear factor KB (NF-KB) by a mechanism that involves phosphorylation of iKBa and translocation of p50/p50 and p50/p65 dimers to the nucleus, but independent of the Ras GTPase and the Raf-1 kinase. We also show that activation of NF-KB by TNFa depends on CDC42 and RhoA, but not Rac-1 proteins, because this activity is drastically inhibited by their respective dominant-negative mutants. In contrast, activation of NF-KB by UV light was not affected by Rho, CDC42, or Rac-1 dominant-negative mutants. Thus, members of the Rho family of GTPases are involved specifically in the regulation of NF-KB-dependent transcription.