Using the most comprehensive inhalation study available, (Wagner, et al., 1974), the dose-response effects of the four major types of asbestos fibers (amosite, anthophyllite, crocidolite, and chrysotile: Canadian, Rhodesian) for lung cancer have been determined. From linear regression analysis of the animal data and five human epidemiology studies giving a wide range of risk estimates, slopes of the curves have been determined and lifetime risk estimates made. Projected risks for rats are presented with and without surface area (s.a.) conversion factors. On the basis of cumulative exposure, the geometric mean of the point estimates for the human studies (0.0146) is quite close to the geometric mean of the animal data (0.0179 without s.a.; 0.0122 with s.a. calculations). These values also match quite well if one of the studies (McDonald, et al.) is eliminated (geometric mean = 0.031) due to qualitatively different exposure considerations (mining and milling vs. industrial environments). Animal risks based on a concentration per day basis (assuming an average 70-year lifespan for humans) are below the lowest human estimate but within 5-6 fold (less) of the projected risk from nonsmoking asbestos workers (2.2 X 10(-3) using the Hammond et al. study.