Methamphetamine (METH) is a potent and widely consumed psychostimulant drug that causes brain functional and structural abnormalities. However, there is little information regarding METH impact on adult neurogenic niches and, indeed, nothing is known about its consequences on the subventricular zone (SVZ). Thus, this work aims to clarify the effect of METH on SVZ stem/progenitor cells dynamics and neurogenesis. For that purpose, SVZ neurospheres were obtained from early postnatal mice and treated with increasing concentrations of METH (1 μM to 500 μM). Exposure to 100, 250, or 500 μM METH for 24 h triggered cell death both by necrosis and apoptosis, as assessed by propidium iodide uptake, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and quantification of the proapoptotic caspase-3 activity. Furthermore, we showed that METH inhibited SVZ progenitor cells proliferation as it decreased BrdU incorporation. Interestingly, at non-toxic concentrations (1 and 10 μM), METH decreased neuronal differentiation and maturation, which were evaluated by quantification of the number of neuronal nuclei-positive neurons and measurements of phospho-c-Jun-NH(2)-terminal kinase signal in growing axons, respectively. Altogether, our data demonstrate that METH has a negative impact on SVZ stem/progenitor cells, inducing cell death and inhibiting neurogenesis, effects that in vivo may challenge the cell replacement capacities displayed by endogenous populations of brain stem/progenitor cells.