INTRODUCTION:
Crohn's disease (CD) is a major subtype of inflammatory bowel disease (IBD), a spectrum of chronic intestinal disorders caused by dysregulated immune responses to gut microbiota. Although transcriptional and functional changes in a number of immune cell types have been implicated in the pathogenesis of IBD, the cellular interactions and signals that drive these changes have been less well-studied.
METHODS:
We performed Cellular Indexing of Transcriptomes and Epitopes by sequencing on peripheral blood, colon, and ileal immune cells derived from healthy subjects and patients with CD. We applied a previously published computational approach, NicheNet, to predict immune cell types interacting with CD8+ T-cell subsets, revealing putative ligand-receptor pairs and key transcriptional changes downstream of these cell-cell communications.
RESULTS:
As a number of recent studies have revealed a potential role for CD8+ T-cell subsets in the pathogenesis of IBD, we focused our analyses on identifying the interactions of CD8+ T-cell subsets with other immune cells in the intestinal tissue microenvironment. We identified ligands and signaling pathways that have implicated in IBD, such as interleukin-1β, supporting the validity of the approach, along with unexpected ligands, such as granzyme B, which may play previously unappreciated roles in IBD.
DISCUSSION:
Overall, these findings suggest that future efforts focused on elucidating cell-cell communications among immune and nonimmune cell types may further our understanding of IBD pathogenesis.