). Approximately 2,700 independent Tn4400'-derived mutants of P. gingivalis were examined for increased sensitivity to PMB killing at a relatively low dose (50 µg⋅mL -1 ). A single PMB-sensitive mutant was obtained in this phenotypic screen. We determined that the Tn4400' transposon was integrated into the gene encoding the lipid A 4'-phosphatase, PGN_0524, demonstrating that this insertion event was responsible for its increased susceptibility of this clone to PMB-dependent killing. The resulting mutant strain, designated 0524-Tn4400', was highly sensitive to PMB killing relative to wild-type P.gingivalis, and exhibited the same sensitivity as the previously characterized strain, 0524KO, which bears a genetically engineered deletion in the PGN_0524 locus. Positive ion mass spectrometric structural (MALDI-TOF MS) analyses revealed that lipid A isolates from 0524-Tn4400' and 0524KO strains displayed strikingly similar MALDI-TOF MS spectra that were substantially different from the wildtype P. gingivalis lipid A spectrum. Finally, intact 0524-Tn4400' and 0524KO mutant bacteria, as well as their corresponding LPS isolates, were significantly more potent in stimulating Toll-like receptor 4 (TLR4)-dependent E-selectin expression in human endothelial cells relative to intact wild-type P. gingivalis or its corresponding LPS isolate. Conclusion The combined molecular evidence provided in this report suggests that PGN_0524, a lipid A 4'-phosphatase, is the sole genetic element conferring the ability of the periodontopathogen, P. gingivalis, to evade the killing activity of cationic antimicrobial peptides, such as PMB. These data strongly implicate PGN_0524 as a critical virulence factor for the ability of P. gingivalis to evade front-line host innate defenses that are dependent upon cationic antimicrobial peptide activity and TLR4 sensing.