1960
DOI: 10.1021/ja01503a037
|View full text |Cite
|
Sign up to set email alerts
|

Inductive Effects on the Acid Dissociation Constants of Mercaptans1

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
64
0

Year Published

1963
1963
2017
2017

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 123 publications
(66 citation statements)
references
References 0 publications
2
64
0
Order By: Relevance
“…1. 20 ####fr is the least square function that need to be optimized#### fr=function(par,ph,Rph){ R0=par[1] alpha=par [2] pka1=par [3] pka2=par [4] sum(((R0+alpha*R0*10^(ph-pka1))/(1+10^(ph-pka1)*(1+10^(ph-pka2)))-Rph)^2) } ####################################################################### # ############# # pka.fit is the function to fit the parameters # # par is a vector of the initial guess for the parameters R0,alpha, pka1 and pka2 # # ph is the experimental value for ph # # Rph is the experimental value for Rph # # Returning values are fitted parameters, fitted Rph and MSE # ####################################################################### # ############# pka.fit=function(par,ph,Rph){ res=optim(par, fr, ph=ph, Rph=Rph) R0.f=res$par[1] alpha.f=res$par [2] pka1.f=res$pa [3] pka2.f=res$par [4] Rph.f=(R0.f+alpha.f*R0.f*10^(ph-pka1.f))/(1+10^(ph-pka1.f)*(1+10^(ph-pka2.f))) MSE=sum((Rph.f-Rph)^2) return(list(R0.f=R0.f,alpha.f=alpha.f,pka1.f=pka1.f,pka2.f=pka2.f,Rph.f=Rph.f, MSE=MSE))}…”
Section: A1mentioning
confidence: 99%
See 1 more Smart Citation
“…1. 20 ####fr is the least square function that need to be optimized#### fr=function(par,ph,Rph){ R0=par[1] alpha=par [2] pka1=par [3] pka2=par [4] sum(((R0+alpha*R0*10^(ph-pka1))/(1+10^(ph-pka1)*(1+10^(ph-pka2)))-Rph)^2) } ####################################################################### # ############# # pka.fit is the function to fit the parameters # # par is a vector of the initial guess for the parameters R0,alpha, pka1 and pka2 # # ph is the experimental value for ph # # Rph is the experimental value for Rph # # Returning values are fitted parameters, fitted Rph and MSE # ####################################################################### # ############# pka.fit=function(par,ph,Rph){ res=optim(par, fr, ph=ph, Rph=Rph) R0.f=res$par[1] alpha.f=res$par [2] pka1.f=res$pa [3] pka2.f=res$par [4] Rph.f=(R0.f+alpha.f*R0.f*10^(ph-pka1.f))/(1+10^(ph-pka1.f)*(1+10^(ph-pka2.f))) MSE=sum((Rph.f-Rph)^2) return(list(R0.f=R0.f,alpha.f=alpha.f,pka1.f=pka1.f,pka2.f=pka2.f,Rph.f=Rph.f, MSE=MSE))}…”
Section: A1mentioning
confidence: 99%
“…Therefore, thiols can be treated with alkali metal hydroxides to obtain thiolates as shown in equation 1. 4.…”
Section: Introduction To Thiolsmentioning
confidence: 99%
“…The rate constants were calculated from eq. [19] where the slope is determined from a plot l/(mLcdcd -mLti,) versus time in seconds; mLcdcd is the number of millilitres of titrating base necessary to neutralize the quenching acid and mLti, is the number of millilitres of base necessary to titrate the aliquot of quenched reaction solution.…”
Section: Kineticsmentioning
confidence: 99%
“…This corresponds to a six-fold difference in nucleophilic reactivity constants. The pK a of benzenethiol is 6.6 (45), while that of benzeneselenol is 4.6 (35). The pK a of benzenethiol is low enough such that proton transfer no longer becomes a rate-limiting factor, and the difference in nucleophilicity of the two atoms is rather small when this condition is met.…”
mentioning
confidence: 99%