“…A wide variety of learning approaches have been applied to TC, to name a few, Bayesian classification (Lewis and Ringuette 1994;Domingo and Pazzani 1996;Larkey and Croft 1996;Koller and Sahami 1997;Lewis 1998), decision trees (Weiss, Apte et al ;Fuhr and Buckley 1991;Cohen and Hirsh 1998;Li and Jain 1998), decision rule classifiers such as CHARADE (Moulinier and Ganascia 1996), or DL-ESC (Li and Yamanishi 1999), or RIPPER (Cohen and Hirsh 1998), or SCAR (Moulinier, Raskinis et al 1996), or SCAP-1 (Apté, Damerau et al 1994), multi-linear regression models (Yang and Chute 1994;Yang and Liu 1999), Rocchio method (Hull 1994;Ittner, Lewis et al 1995;Sable and Hatzivassiloglou 2000), Neural Networks (Schütze, Hull et al 1995;Wiener, Pedersen et al 1995;Dagan, Karov et al 1997;Ng, Goh et al 1997;Lam and Lee 1999;Ruiz and Srinivasan 1999), example based classifiers (Creecy 1991;Masand, Linoff et al 1992;Larkey 1999), support vector machines (Joachims 1998), Bayesian inference networks (Tzeras and Hartmann 1993;Wai and Fan 1997;Dumais, Platt et al 1998), genetic algorithms (Masand 1994;Clack, Farringdon et al 1997), and maximum entropy modelling (Manning and Schütze 1999).…”