Inversions of electromagnetic data from different coil configurations provide independent information about geological structures. We develop a 1-D inversion algorithm that can invert data from the horizontal coplanar (HC), vertical coplanar, coaxial (CA), and perpendicular coil configurations separately or jointly. The inverse problem is solved by minimizing a model objective function subject to data constraints. Tests using synthetic data from 1-D models indicate that if data are collected at a sufficient number of frequencies, then the recovered models from individual inversions of different coil systems can be quite similar. However, if only a limited number of frequencies are available, then joint inversion of data from different coils produces a better model than the individual inversions. Tests on 3-D synthetic data sets indicate that 1-D inversions can be used as a fast and approximate tool to locate anomalies in the subsurface. Also for the test example presented here, the joint inversion of HC and CA data over a 3-D conductivity provided a better model than that produced by the individual inversion of the data sets.