Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Mycoviruses, viruses that infect fungi, have been identified across nearly every fungal taxon. Despite their widespread presence, the ecological effects of mycoviruses remain poorly understood. They can influence the biology of their hosts in various ways, including altering growth, reproduction, and pathogenicity. Their ability to induce either fungal hyper- or hypovirulence and thus regulate general fungal fitness by increasing fungal aggressiveness or, conversely, in extreme cases, converting harmful fungi into beneficial ones, has attracted increasing attention in recent years as a potential means of protecting plants from fungal diseases and pests. Increasing difficulties in controlling fungal diseases, pests and weeds with synthetic chemical pesticides, exacerbated by the emergence of resistance or tolerance to certain active ingredients, and stricter regulatory requirements due to environmental and health concerns, have stimulated interest in alternative approaches. In parallel with the introduction of double-stranded (ds)RNA-based products for crop protection and the fundamental knowledge generated in this field in recent years, the potential use of mycoviruses to control pathogenic fungi appears to be within reach. This review highlights recent advances in the field and emphasizes the potential of mycoviruses as biological control agents (BCAs), with the emphasis on the utilization of mycovirus-induced fungal hypovirulence to control fungi that cause plant diseases and mycovirus-induced fungal hypervirulence to protect plants from fungal hosts such insect pests or weeds.
Mycoviruses, viruses that infect fungi, have been identified across nearly every fungal taxon. Despite their widespread presence, the ecological effects of mycoviruses remain poorly understood. They can influence the biology of their hosts in various ways, including altering growth, reproduction, and pathogenicity. Their ability to induce either fungal hyper- or hypovirulence and thus regulate general fungal fitness by increasing fungal aggressiveness or, conversely, in extreme cases, converting harmful fungi into beneficial ones, has attracted increasing attention in recent years as a potential means of protecting plants from fungal diseases and pests. Increasing difficulties in controlling fungal diseases, pests and weeds with synthetic chemical pesticides, exacerbated by the emergence of resistance or tolerance to certain active ingredients, and stricter regulatory requirements due to environmental and health concerns, have stimulated interest in alternative approaches. In parallel with the introduction of double-stranded (ds)RNA-based products for crop protection and the fundamental knowledge generated in this field in recent years, the potential use of mycoviruses to control pathogenic fungi appears to be within reach. This review highlights recent advances in the field and emphasizes the potential of mycoviruses as biological control agents (BCAs), with the emphasis on the utilization of mycovirus-induced fungal hypovirulence to control fungi that cause plant diseases and mycovirus-induced fungal hypervirulence to protect plants from fungal hosts such insect pests or weeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.