Wind turbines (WT) are a clean renewable energy source that have gained popularity in recent years. Gearboxes are complex, expensive, and critical components of WT, which are subject to high maintenance costs and several stresses, including high loads and harsh environments, that can lead to failure with significant downtime and financial losses. This paper focuses on the development of a digital twin-based approach for the modelling and simulation of WT gearboxes with the aim to improve their design, diagnosis, operation, and maintenance by providing insights into their behavior under different operating conditions. Powerful commercial computer-aided design tools (CAD) and computer-aided engineering (CAE) software are embedded into a computationally efficient multi-objective optimization framework (modeFrontier) with the purpose of maximizing the power density, compactness, performance, and reliability of the WT gearbox. High-fidelity models are used to minimize the WT weight, volume, and maximum stresses and strains achieved without compromising its efficiency. The 3D CAD model of the WT gearbox is carried out using SolidWorks (version 2023 SP5.0), the Finite Element Analysis (FEA) is used to obtain the stresses and strains, fields are modelled using Ansys Workbench (version 2024R1), while the multibody kinematic and dynamic system is analyzed using Adams Machinery (version 2023.3, Hexagon). The method has been successfully applied to different case studies to find the optimal design and analyze the performance of the WT gearboxes. The simulation results can be used to determine safety factors, predict fatigue life, identify potential failure modes, and extend service life and reliability, thereby ensuring proper operation over its lifetime and reducing maintenance costs.