2024
DOI: 10.3126/jnms.v6i2.63030
|View full text |Cite
|
Sign up to set email alerts
|

Inequalities for Means Regarding the Trigamma Function

Kwara Nantomah,
Gregory Abe-I-Kpeng,
Sunday Sandow

Abstract: Let G(α, β), A(α, β) and H(α, β), respectively, be the geometric mean, arithmetic mean and harmonic mean of α and β. In this paper, we prove that G(ψ′ (z), ψ′ (1/z)) ≥ π2/6, A(ψ′ (z), ψ′ (1/z)) ≥ π2/6 and H(ψ′ (z), ψ′ (1/z)) ≤ π2/6. This extends the previous results of Alzer and Jameson regarding the digamma function ψ. The mathematical tools used to prove the results include convexity, concavity and monotonicity properties of certain functions as well as the convolution theorem for Laplace transforms.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?