Abstract. cervical cancer is a leading cause of mortality in women. Molecular and epidemiological data have unequivocally confirmed that high-risk human papillomaviruses (HPVs) are a major etiological agent of this malignancy, as host epigenetic alterations are induced in response to viral infection. The present study evaluated the methylation status of cpG islands surrounding miR-124a, miR-34b and miR-203 in 29 cervical cancer precursor lesions, 31 cervical tumors and 30 normal control samples, with the aim of identifying potential markers of cervical cancer. Direct quantitative methylation-specific PCR (qMSP) was used to evaluate the degree of methylation in the samples. HPV DNA was detected and genotyped using the Linear Array HPV Genotyping Test. Data were statistically analyzed using the Kruskal-Wallis test. Differences in miRNA hypermethylation between the tumor and control samples were highly significant for all the genes tested (p<0.0001). Significant results were also obtained regarding the hypermethylation of miR-124a and miR-203 in the precursor lesions compared to the control samples. among the 29 patients with precursor lesions, 68.97% (20/29) presented high risk (hr)-HPV genotypes and 31.03% (9/29) were diagnosed with low risk (lr)-HPV. Significant results (p=0.0266) were obtained for miR-124a (hr-HPV group, mean 41.32; lr-HPV group, mean 6.74), revealing a strong association between the methylation process and the hr-HPV genotype. Borderline results (p=0.058) were obtained for miR-203 (hr-HPV group, mean 44.05; lr-HPV group, mean 3.33). These results confirm the involvement of epigenetic alterations in cervical oncogenesis. The lr-HPV precursor lesions had a methylation percent pattern similar to that of the normal samples, while the results for the hr-HPV precursor lesions and tumors indicate a possible involvement of the hr-HPV genotype in the miRNA methylation process.