2018
DOI: 10.1007/s11040-018-9295-z
|View full text |Cite
|
Sign up to set email alerts
|

Inequalities in the Setting of Clifford Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
2
2

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 11 publications
0
5
0
1
Order By: Relevance
“…Corollary (El Kamel and Jday 12, Corollary 5.5 ) Let m>2$$ m>2 $$ be even. Suppose that ffalse(xfalse)=f0false(false|false|xfalse|false|cfalse)$$ f(x)={f}_0\left({\left\Vert x\right\Vert}_c\right) $$ is a real‐valued radial function in Bfalse(Rmfalse)$$ B\left({R}^m\right) $$ and gBfalse(mfalse)scriptCl0,m$$ g\in B\left({\mathbb{R}}^m\right)\otimes \mathcal{C}{l}_{0,m} $$.…”
Section: The Clifford‐fourier Transformmentioning
confidence: 99%
See 2 more Smart Citations
“…Corollary (El Kamel and Jday 12, Corollary 5.5 ) Let m>2$$ m>2 $$ be even. Suppose that ffalse(xfalse)=f0false(false|false|xfalse|false|cfalse)$$ f(x)={f}_0\left({\left\Vert x\right\Vert}_c\right) $$ is a real‐valued radial function in Bfalse(Rmfalse)$$ B\left({R}^m\right) $$ and gBfalse(mfalse)scriptCl0,m$$ g\in B\left({\mathbb{R}}^m\right)\otimes \mathcal{C}{l}_{0,m} $$.…”
Section: The Clifford‐fourier Transformmentioning
confidence: 99%
“…Let 1p,q<$$ 1\le p,q&lt;\infty $$ and r1$$ r\ge 1 $$ with 1false/p+0.1em1false/q=1+1false/r$$ 1/p&#x0002B;1/q&#x0003D;1&#x0002B;1/r $$. (El Kamel and Jday 12, Theorem 5.2 ) For m=2$$ m&#x0003D;2 $$, if fLpfalse(2false)scriptCl0,2$$ f\in {L}&#x0005E;p\left({\mathbb{R}}&#x0005E;2\right)\otimes \mathcal{C}{l}_{0,2} $$ and gLqfalse(2false)scriptCl0,2$$ g\in {L}&#x0005E;q\left({\mathbb{R}}&#x0005E;2\right)\otimes \mathcal{C}{l}_{0,2} $$, then fClgLrfalse(2false)scriptCl0,2$$ f{\ast}_{Cl}g\in {L}&#x0005E;r\left({\mathbb{R}}&#x0005E;2\right)\otimes \mathcal{C}{l}_{0,2} $$. (El Kamel and Jday 12, Theorem 5.4 )For m>2$$ m&gt;2 $$, if ffalse(xfalse)=f0false(false|false|xfalse|false|cfalse)$$ f(x)&#x0003D;{f}_0\left({\left\Vert x\right\Vert}_c\right) $$ is a real‐valued radial function in Lpfalse(mfalse)$$ {L}&#x0005E;p\left({\mathbb{R}}&#x0005E;m\right) $$<...…”
Section: The Clifford‐fourier Transformunclassified
See 1 more Smart Citation
“…Since (20) and ( 21) are very different we do not have any commutative relations between the generalised translation and modulation operators.…”
Section: Generalized Translation and Modulationmentioning
confidence: 99%
“…where the kernel K ± (x, y) is given by an explicit expression. For this kind of Clifford-Fourier transform many generalizations were found, see [11,12,4,13,7] and some important properties such as the uncertainty principle and Riemann-Lebesgue lemma were proved [19,20].…”
Section: Introductionmentioning
confidence: 99%