2023
DOI: 10.48550/arxiv.2302.12053
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Inequity aversion reduces travel time in the traffic light control problem

Abstract: The traffic light control problem is to improve the traffic flow by coordinating between the traffic lights. Recently, a successful deep reinforcement learning model, CoLight, was developed to capture the influences of neighboring intersections by a graph attention network. We propose IACoLight that boosts up to 11.4% the performance of CoLight by incorporating the Inequity Aversion (IA) model that reshapes each agent's reward by adding or subtracting advantageous or disadvantageous reward inequities compared … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?