The construction sector is currently undergoing a deep digital transformation resulting from the prioritization of emerging technologies, among which are digital twins. New goals and opportunities are appearing that minimize the impact on a building’s lifecycle, reduce economic, environmental, and extra-social costs, optimize energetic performance, decrease energy consumption and emissions, and enhance the durability and service life of buildings and their components. Among the research activities that have led to the development of a maintenance management model (MMM), this paper deals with the digital-twin approach, considering it instrumental to the innovative governance of the building environment from a lifecycle-based and sustainable perspective. It includes paying attention to efficiency in terms of resource use, energy consumption, and the energy performance of buildings, supporting decarbonization processes, and environmental vulnerability due to natural disasters, extreme weather, and seismic events. Its current implementation is presented here. In this scenario, the authors, operating at BIG srl, an academic spinoff of the Mediterranean University of Reggio Calabria, Italy, working together with the startup Sysdev, based in Torino, Italy, the company Berna Engineering srl, based in Reggio Calabria, Italy, and ACCA Software spa, based in Avellino, Italy, introduce the experimental application of the DT4SEM for safety and well-being in buildings, which is specifically oriented to seismic behavior monitoring. The proposal, while highlighting the innovative character of DT approaches, responds to the need for reliable data for increasingly effective forecasts and the control of the seismic behavior of buildings, facilitating informed decision-making for building management while also optimizing maintenance schedules.