We present an efficient computational approach to continuum topology optimization with linearized buckling constraints, using Reduced Order Models (ROM). A reanalysis technique is employed to generate basis vectors that subsequently are used to significantly reduce the size of the generalized eigenvalue problems. We demonstrate the efficacy of this approach by optimizing for stiffness with buckling constraints and show results for several test cases. Based on our findings, we conclude that the ROM can potentially save significant computational effort without compromising the quality of the results.