2023
DOI: 10.3390/diagnostics13122107
|View full text |Cite
|
Sign up to set email alerts
|

Infant Cry Signal Diagnostic System Using Deep Learning and Fused Features

Abstract: Early diagnosis of medical conditions in infants is crucial for ensuring timely and effective treatment. However, infants are unable to verbalize their symptoms, making it difficult for healthcare professionals to accurately diagnose their conditions. Crying is often the only way for infants to communicate their needs and discomfort. In this paper, we propose a medical diagnostic system for interpreting infants’ cry audio signals (CAS) using a combination of different audio domain features and deep learning (D… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(1 citation statement)
references
References 56 publications
0
1
0
Order By: Relevance
“…Differentiating between cries is very challenging; for instance, the difference between a sleepy cry and a sick cry can be difficult for caregivers. Because of these reasons, a system that can solve this problem efficiently needs to be developed (Zayed et al, 2023 ).…”
Section: Introductionmentioning
confidence: 99%
“…Differentiating between cries is very challenging; for instance, the difference between a sleepy cry and a sick cry can be difficult for caregivers. Because of these reasons, a system that can solve this problem efficiently needs to be developed (Zayed et al, 2023 ).…”
Section: Introductionmentioning
confidence: 99%