2007
DOI: 10.1007/s11704-007-0041-0
|View full text |Cite
|
Sign up to set email alerts
|

Inference and learning in hybrid probabilistic network

Abstract: This paper proposed a novel hybrid probabilistic network, which is a good tradeoff between the model complexity and learnability in practice. It relaxes the conditional independence assumptions of Naive Bayes while still permitting efficient inference and learning. Experimental studies on a set of natural domains prove its clear advantages with respect to the generalization ability.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?