2015
DOI: 10.1920/wp.cem.2015.5415
|View full text |Cite
|
Sign up to set email alerts
|

Inference for functions of partially identified parameters in moment inequality models

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
12
0

Year Published

2015
2015
2016
2016

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 10 publications
(13 citation statements)
references
References 31 publications
1
12
0
Order By: Relevance
“…This implies that the setM n (θ n ) can also be treated as non-stochastic, whereM n is the set in equation (B.120) withK n replacing K Pn . The result then follows because by Lemma D.2.8 in Bugni, Canay, and Shi (2015), G Lemma B.7: Let (P n , θ n ) have the almost sure representations given in Lemma B.1, let J * be defined as in (B.37), and assume that J * = ∅. Let C collect all size d subsets C of {1, ..., J + 2d + 2} ordered lexicographically by their smallest, then second smallest, etc.…”
Section: Appendix B Main Lemmasmentioning
confidence: 74%
See 4 more Smart Citations
“…This implies that the setM n (θ n ) can also be treated as non-stochastic, whereM n is the set in equation (B.120) withK n replacing K Pn . The result then follows because by Lemma D.2.8 in Bugni, Canay, and Shi (2015), G Lemma B.7: Let (P n , θ n ) have the almost sure representations given in Lemma B.1, let J * be defined as in (B.37), and assume that J * = ∅. Let C collect all size d subsets C of {1, ..., J + 2d + 2} ordered lexicographically by their smallest, then second smallest, etc.…”
Section: Appendix B Main Lemmasmentioning
confidence: 74%
“…Under this assumption, the class of normalized moment functions is uniformly Donsker (Bugni, Canay, and Shi, 2015). This allows us to show that the first-order linear approximation to s(p, C n (ĉ n )) is valid and further establish the validity of our bootstrap procedure.…”
Section: Assumptionsmentioning
confidence: 75%
See 3 more Smart Citations