2012
DOI: 10.1007/s10472-012-9290-1
|View full text |Cite
|
Sign up to set email alerts
|

Inference in possibilistic network classifiers under uncertain observations

Abstract: Possibilistic networks, which are compact representations of possibility distributions, are powerful tools for representing and reasoning with uncertain and incomplete information in the framework of possibility theory. They are like Bayesian networks but lie on possibility theory to deal with uncertainty, imprecision and incompleteness. While classification is a very useful task in many real world applications, possibilistic network-based classification issues are not well investigated in general and possibil… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
1

Year Published

2014
2014
2022
2022

Publication Types

Select...
3
3
1

Relationship

1
6

Authors

Journals

citations
Cited by 11 publications
(8 citation statements)
references
References 39 publications
0
7
0
1
Order By: Relevance
“…Most of the works are more or less direct adaptations of probabilistic networks inference algorithms. For examples, a possibilistic elimination variable algorithm can be found in [5] in the context of possibilistic network classifiers. In [7], a possibilistic counterpart of teh wel-known Message passing algorithm is proposed.…”
Section: B High Computational Complexitymentioning
confidence: 99%
“…Most of the works are more or less direct adaptations of probabilistic networks inference algorithms. For examples, a possibilistic elimination variable algorithm can be found in [5] in the context of possibilistic network classifiers. In [7], a possibilistic counterpart of teh wel-known Message passing algorithm is proposed.…”
Section: B High Computational Complexitymentioning
confidence: 99%
“…Fixed probabilistic evidence corresponds to the concept described as soft evidence in [4], [33], [42], [44], [48].…”
Section: Fixed Probabilistic Evidence: Specific Properties and Examplesmentioning
confidence: 99%
“…Apart from two exceptions [4], [26] the concepts of fixed and not-fixed probabilistic evidence are never distinguished. Specifically, several published articles clearly distinguish between likelihood evidence and probabilistic evidence -regrouped under the term uncertain evidence-without identifying the distinction between fixed and not-fixed probabilistic evidence [12], [15], [42], [44], [49].…”
Section: About the Distinction Between Fixed And Not-fixed Probabilismentioning
confidence: 99%
“…Зачастую разме-ры полученных данных, присутствующая в них неопределенность, связанная с нехваткой данных или их неточностью [2], а также общая связность системы в совокупности порождают проблему, для решения которой в информатике и искусственном интеллекте используется декомпозиция исходной системы на совокупность подсистем с целью локализовать вычисления, тем самым экспоненциально сократив затра-ты на решение поставленной задачи. Такие представители класса вероятностных графических моделей, как байесовские сети доверия, а также родственные им алгебраические байесовские сети (АБС), допус-кающие разбиение исходных данных на совокупности локально тесно связанных между собой объек-тов [3], позволяют существенно ускорить процедуру обработки новых поступающих данных (так назы-ваемых свидетельств), а также являются гибкой структурой, способной перестраиваться с учетом новых условий.…”
Section: Introductionunclassified