2022
DOI: 10.1111/tgis.12913
|View full text |Cite
|
Sign up to set email alerts
|

Inference of positional accuracy of collaborative data from intrinsic parameters

Abstract: In many developing countries, where spatial data deficits are common, both at large and small scales (Silva & Camboim, 2020), voluntary geographic information (VGI) can minimize the consequences of this scenario. In these countries, the focus of research on VGI is updating existing cartographic bases (Bravo & Sluter, 2015;Machado & Camboim, 2019). In order to use collaborative data, however, one needs to know their quality.Worldwide, most standards addressing spatial data quality are based on ISO 19.517 (ISO, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 25 publications
0
1
0
1
Order By: Relevance
“…The authors used Google Places of Interest data. In addition, Paiva and Camboim (2022) worked with official and collaborative data from the capital city of Minas Gerais to search for intrinsic geospatial data quality models. Finally, Elias et al (2020) explored the extrinsic quality of road axes from the OSM's VGI platform in Salvador, Bahia, compared with the authoritative municipal dataset.…”
Section: A Current Panorama Of Geospatial Big Data Integration and An...mentioning
confidence: 99%
“…The authors used Google Places of Interest data. In addition, Paiva and Camboim (2022) worked with official and collaborative data from the capital city of Minas Gerais to search for intrinsic geospatial data quality models. Finally, Elias et al (2020) explored the extrinsic quality of road axes from the OSM's VGI platform in Salvador, Bahia, compared with the authoritative municipal dataset.…”
Section: A Current Panorama Of Geospatial Big Data Integration and An...mentioning
confidence: 99%
“…Entretanto, o fato é que diversas regiões da superfície terrestre não dispõem de dados oficiais atualizados e de qualidade para a aplicação de métricas extrínsecas. Nestes casos, são desenvolvidos e aplicados métodos de avaliação intrínseca, nos quais a análise é efetuada com base nos próprios dados, o que cria novas alternativas para a avaliação da qualidade de dados colaborativos (Minghini & Frassinelli, 2019;Paiva & Camboim, 2022).…”
Section: Introductionunclassified